精品国产乱码久久久久久婷婷,国产传媒精品,亚洲AV日韩综合一区,久久国产成人

Drain tank typeScientific water replenishment device源頭廠家規(guī)格參數(shù)
Your location : Home > Product > Drain tank type
Scientific water replenishment device
Scientific water replenishment device
Scientific water replenishment device
Scientific water replenishment device

Scientific water replenishment device

The scientific water replenishment device technology is an energy-saving measure widely adopted by the Ministry of Electric Power. It is a calculation and analysis method for thermodynamic systems using the enthalpy drop method, which has developed in recent years. Add a scientific water replenishment device in the condenser turbine condenser
Online inquiry
上一產(chǎn)品 : Secondary filter screen
  • Content details

The scientific water replenishment device technology is an energy-saving measure widely adopted by the Ministry of Electric Power. It is a calculation and analysis method for thermodynamic systems using the enthalpy drop method, which has developed in recent years. Add a scientific water replenishment device in the condenser turbine condenser, scientifically spray chemical water replenishment, rapidly cool the discharged steam, thereby improving the vacuum and heat recovery economy of the unit. At the same time, increase the water temperature entering the deaerator, reduce the oxygen content, and improve the deaeration rate of the deaerator. After adopting this scientific water replenishment device, coal consumption can be reduced by 1-3 grams per kilowatt hour. The investment can be recovered within six months.


Diagram 1 of the scientific water replenishment device for condensers


Working principle and function of scientific water replenishment device:


We have determined that the water replenishment is at the throat of the condenser. Based on the size of the condenser throat, we determine the position of the pipeline layout of the "water replenishment energy-saving device" inside the condenser. The replenishment water is atomized from the throat through the "water replenishment energy-saving device" and can form an "atomization belt", which flows through the shaft seal cooler, air extractor, and low-pressure heater before reaching the deaerator. The energy generated by this process is:


1. Supplementing water absorbs a certain amount of heat, resulting in a significant increase in the feedwater temperature. This increases the low-pressure system extraction volume, reduces the high-pressure extraction volume, improves the thermal power conversion rate, and allows this portion of steam to work inside the unit.


2. Supplementing water in the condenser absorbs heat from the exhaust steam, reduces a certain proportion of balance loss, strengthens heat exchange, lowers the exhaust steam temperature, and improves the vacuum of the unit.


3. The condenser performs vacuum deoxygenation on the make-up steam, improving the deoxygenation capacity of the entire regenerative system.


4. And it is conducive to the load connection of the unit.


The condenser uses this scientific water replenishment device - discharge potential:


The scientific water replenishment device is an energy-saving measure widely adopted by the Ministry of Electric Power. It is a calculation and analysis method for thermodynamic systems using the enthalpy drop method, which has developed in recent years. In the condenser, a set of chemical and scientific water replenishment energy-saving system is added, which sprays chemical and scientific water into the condenser to quickly cool the discharged steam, thereby improving the vacuum and heat recovery economy of the unit. At the same time, the water temperature entering the deaerator is increased, the oxygen content is reduced, and the deaeration rate of the deaerator is improved. After adopting the chemical science water replenishment energy-saving system, coal consumption can be reduced by 1-3 grams per kilowatt hour. The investment can be recovered within six months.


Scientific water replenishment technology transformation plan and determination of relevant parameters:


1. Scientific water replenishment device - selection of application plan. Based on the on-site system, select the source of water replenishment, whether it is from the unit or from the main pipe, and then determine the position and spatial size of water replenishment into the condenser throat.


2. Determination of water replenishment amount. The amount of water replenished into the condenser is limited by the following main factors: the flow capacity of the condensate pump, main extraction unit, shaft seal cooler, and low-pressure heater. Secondly, it is limited by its deoxygenation capacity. For the determined unit and condenser (steam turbine condenser) chemical science water replenishment energy-saving system device, its deoxygenation capacity is determined. If the amount of replenishment water is too large, it will not be able to make the oxygen content of the replenishment water below the required value, causing the oxygen content of the condensate to reach the standard, thereby corroding the condensate pipeline. Furthermore, during operation, the amount of supplementary water should also match the load carried by the unit.


Precautions for the use, operation, and installation of scientific water replenishment devices:


1. Based on the size of the condenser throat, determine the position of the pipeline layout of the "chemical science water replenishment device" inside the condenser.


If the unit undergoes minor repairs, the installation period can be half a day. If the cylinder is not suspended for installation, the installation period can be - days.


3. A flow orifice plate can be installed on the pipeline from the chemical science water replenishment device to the condenser, and the flow indicator can be installed on the operating layer to provide a basis for operators to adjust the water replenishment amount.


4. In order to enable operators to timely and conveniently understand the water level of the condenser and adjust the make-up water flow rate, valve control flow and the entire system anti siphon pipeline can be used, or an "electric connection water level gauge" can be installed on the operating panel.


5. Operators can adjust the make-up water flow rate based on the economic parameters and load of the unit.


6. The support of the "scientific water replenishment energy-saving device" inside the condenser should be firmly fixed to prevent loosening.


Instructions for ordering scientific water replenishment devices:


1. The use of chemical science water replenishment equipment requires a water replenishment amount of at least one ton per hour. (T/H)


2. Diagram of the position and spatial dimensions of the condenser throat. (Copy)


3. Is the system supplying water from the unit or from the main pipe.


4. Provide excess condensate pump capacity


Technical parameters of scientific water replenishment device:



型號補水量(t/h)-率相對提高(%)供電煤耗(g/kw.h)年節(jié)煤(t/a)
BS-10100.2251-3337.5
BS-20200.450675.0
BS-30300.7201080.0
BS-40400.9001350.0
BS-50501.1251687.5
BS-60601.3502025.0
BS-70701.5752362.5
BS-80801.8002700.5
BS-90902.0253037.5
BS-1001002.2253413.0
BS-1101102.4753712.5


產(chǎn)品動態(tài)

Scientific water replenishment device源頭廠家Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

久久精品www人人爽人人 | av基地| 久久国产成人| 欧美又大粗又爽又黄大片视频| 成人国产一区二区三区精品| 亚洲av色图| 高潮了| 狠狠操天天操| 中文日韩无码人妻| 亚洲日本乱码在线观看| 久久老子午夜精品无码| 少妇人妻偷人精品视蜜桃| AV无码一区二区三区| 杨浦区| 欧美灰丝袜丝交nylons| 亚洲黄色三级| 欧洲无乱码一二三区| 无码人妻视频一区二区三区| 夜夜未满十八勿进的爽爽影院| 国产AV无码专区亚洲AV漫画| 婷婷色香合缴缴情AV第三区| 国产亚洲欧洲Aⅴ综合一区| 岑巩县| 欧美性猛交xxxx乱大交| 日韩视频专区| h小视频| 国产av一区二区三区| 91精品国自产拍天天拍| 亚洲丰满熟女一区二区哦| 在线成人精品国产区免费| 久久一本人碰碰人碰| 久久99国产精品成人| 狂野欧美激情性XXXX| 国产精品一区波多野结衣| 美女少妇| av一区| 西西人体免费视频| 成人性生生活性生交久| 国产大屁股喷水| 中文字幕一区二区三区人妻| 日韩色图|